谭滔 1田野 1,2张建中 1,*
作者单位
摘要
1 哈尔滨工程大学物理与光电工程学院纤维集成光学教育部重点实验室,黑龙江 哈尔滨 150001
2 哈尔滨工程大学烟台研究院先进光纤传感技术研发中心,山东 烟台 264006
基于光纤后向散射的光纤传感技术具有全分布、长距离等特点,在诸多领域受到广泛关注,被认为是一种变革性技术。散射光随着传输距离增加逐渐减弱,信噪比降低导致感知性能下降,成为限制其在长距离应用的主要因素。通过光纤掺杂、写入弱光栅等方式增加光纤散射强度可以有效缓解该问题。然而对于数千米的超长距应用,散射增加意味光纤损耗的增强,通过增加散射来提升信噪比的方法失效。本课题组提出一种增加光纤后向散射强度但不增加光纤本征损耗的散射收集能力增强光纤。本文分别从增强光纤散射能力和增强后向收集能力两个方向总结了散射增强光纤的几种方法,论述了各种方法的优缺点,并进行了简要展望。
光纤光学 分布式传感 散射增强光纤 辐照光纤 微结构光纤 掺杂光纤 超长锥形光纤 
光学学报
2024, 44(1): 0106010
马喆 1†张明江 2,3,*†江俊峰 4,5,6,7张建忠 1,3[ ... ]刘铁根 4,5,6,7
作者单位
摘要
1 太原理工大学电子信息与光学工程学院,山西 太原 030024
2 太原理工大学物理学院,山西 太原 030024
3 太原理工大学新型传感器与智能控制教育部重点实验室,山西 太原 030024
4 天津大学精密仪器与光电子工程学院,天津 300072
5 天津大学光电信息技术教育部重点实验室,天津 300072
6 天津大学光纤传感研究所,天津 300072
7 天津市光纤传感工程中心,天津 300072
基于线性调频(LFM)脉冲的光纤分布式声波传感(DAS)技术采用同时具有连续波形和脉冲波形优势的LFM脉冲作为探测光,利用频移产生附加相位实现光纤应变导致相位补偿的原理进行传感。可实现光纤链路沿线声/振信号的定量波形恢复,具有响应速度快、灵敏度高等特点,在地球物理学、线性基础设施监测等领域具有显著的优势和应用前景。论述基于LFM脉冲DAS技术的基本传感机理,概述传感距离、空间分辨率、频率响应与衰落噪声抑制等关键技术指标的研究进展,介绍DAS在典型应用中的进展,并对未来可能发展趋势进行探讨。
光纤光学 分布式声波传感 线性调频脉冲 瑞利散射 相位解调 
激光与光电子学进展
2023, 60(11): 1106002
Yahui Wang 1,2†Xinxin Hu 1Lintao Niu 1Hui Liu 1[ ... ]Mingjiang Zhang 1,2,3,*
Author Affiliations
Abstract
1 Taiyuan University of Technology, Ministry of Education, Key Laboratory of Advanced Transducers and Intelligent Control System, Taiyuan, China
2 Taiyuan University of Technology, College of Physics, Taiyuan, China
3 Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
We propose and experimentally demonstrate a long-range chaotic Brillouin optical correlation domain analysis by employing an optimized time-gated scheme and differential denoising configuration, where the number of effective resolving points largely increases to more than one million. The deterioration of the chaotic Brillouin gain spectrum (BGS) and limitation of sensing range owing to the intrinsic noise structure, resulting from the time delay signature (TDS) and nonzero background of chaotic laser, is theoretically analyzed. The optimized time-gated scheme with a higher extinction ratio is used to eliminate the TDS-induced impact. The signal-to-background ratio of the measured BGS is enhanced by the differential denoising scheme to furthest remove the accumulated nonzero noise floor along the fiber, and the pure chaotic BGS is ulteriorly obtained by the Lorentz fit. Ultimately, distributed strain sensing along a 27.54-km fiber with a 2.69-cm spatial resolution is experimentally demonstrated, and the number of effective resolving points is more than 1,020,000.
chaos distributed fiber sensing stimulated Brillouin scattering long-range sensing 
Advanced Photonics Nexus
2023, 2(3): 036011
BAI Hua 1LU Changhao 1MA Ming 1,*YAN Shulin 2,3[ ... ]HAN Zhibo 2,3,4
Author Affiliations
Abstract
1 Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China
2 Tianjin Key Laboratory of Engineering Technologies for Cell Phamaceutical, Tianjin 300457, China
3 National Engineering Research Center of Cell Products/AmCellGene Co., Ltd., Tianjin 300457, China
4 State Key Lab of Experimental Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
Cell confluence is an important metric to determine the growth and the best harvest time of adherent cells. At present, the evaluation of cell confluence mainly relies on experienced labor, and thus it is not conducive to the automated cell culture. In this paper, we proposed an improved U-Net algorithm (called DU-Net) for the segmentation of adherent cells. First, the general convolution was replaced by the dilated convolution to expand the receptive fields for feature extraction. Then, the convolutional layers were combined with the batch normalization layers to reduce the dependence of the network on initialization. As a result, the segmentation accuracy and F1-score of the proposed DU-Net for adherent cells with low confluence (<50%) reached 96.94% and 93.87%, respectively, and for those with high confluence (≥50%), they reached 98.63% and 98.98%, respectively. Further, the paired t-test results showed that the proposed DU-Net was statistically superior to the traditional U-Net algorithm.
光电子快报(英文版)
2022, 18(6): 378
作者单位
摘要
1 哈尔滨工程大学物理与光电工程学院纤维集成光学教育部重点实验室,黑龙江 哈尔滨 150001
2 哈尔滨工程大学烟台研究院先进光纤传感技术研发中心,山东 烟台 264006
3 新南威尔士大学电气工程与电信学院,悉尼 NSW2052
光纤构成了当今世界通讯的主干网络,已成为人类活动的底层构架。近年来,物联网万物互联对光纤传输带宽的需求急剧增加,光纤功能更是从单一的信息传输扩展到了信息传输和感知一体化,特种石英光纤是实现该目标的一个重要组成部分,其研发成为了热点。特种光纤的复杂结构和多组分掺杂给其高效制造提出了挑战。本文围绕增材制造技术在特种石英光纤高效制备方面的难题、探索及进展进行总结梳理,首先重点报告在基于紫外光固化的增材制造技术路线下,如何克服大尺寸石英增材制造中陶瓷化和塌缩的难题,发展适合的增材技术用于制备特种石英光纤预制棒,以拉制出所需的特种光纤。然后介绍直接墨水书写与选择性激光熔融等不同增材技术用于石英光纤预制棒制造的近期进展。最后对增材制造在石英光纤制造中存在的问题和未来发展趋势进行简要讨论与展望。
光纤光学 增材制造 光纤预制棒制造 特种光纤 有源光纤 
激光与光电子学进展
2022, 59(15): 1516003
Author Affiliations
Abstract
1 Key Laboratory of In-fiber Integrated Optics, Ministry of Education, Harbin Engineering University, Harbin 150001, China
2 State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China
A new type of X-ray fiber dosimeters is proposed that is based on the X-ray response of CsPbBr3 perovskite-quantum-dots (PQDs) activated silica fiber. Such a fiber sensor is constructed by covering a multimode silica fiber with PQDs embedded glass powders using a transparent high-temperature glue. Under X-ray irradiation, the fiber sensor emits bright green light at 525 nm, which can be readily recorded by a CCD spectrometer. The integrated radioluminescence intensity has an excellent linear response to the X-ray dose. Study is given to the fiber sensor concerning its thermal stability in a temperature range of room temperature up to 300°C, resistance to water erosion, and prolonged X-ray irradiation. The results verify that the proposed fiber sensor has the advantages of good thermal stability, chemical durability, and radiation hardness. The studied X-ray fiber sensor holds promise to be used in a real-time, in-situ, and remote radiation dose monitoring.
perovskite quantum dots glass ceramics X-ray radiation fiber dosimeter 
Chinese Optics Letters
2022, 20(6): 063401
Author Affiliations
Abstract
1 Key Laboratory of In-fiber Integrated Optics, Ministry of Education, Harbin Engineering University, Harbin 150001, China
2 National Demonstration Center for Experimental Physics Education, Harbin Engineering University, Harbin 150001, China
3 Photonics Research Center, Guilin University of Electronics Technology, Guilin 541004, China
4 e-mail: zhangyaxun@hrbeu.edu.cn
The typical functions of the optical fiber are communication and sensing. However, the fiber functions need to extend to meet the requirements of the development of artificial intelligence. This paper achieves an all-fiber device with storage and logic computing functions using a single-mode fiber and Ge2Sb2Te5 (GST) material. We use the pulse amplitude modulation (the switching energy is about 50 nJ) to switch the GST state for performing the eight-level data storage (3-bit). The all-fiber memory device has the advantages of high optical contrast (about 38%), good reversibility, and high repeatability. We implement the all-optical logic operations (“AND” and “OR”) by using two memory cells in series and parallel. For the first time, we use the single-mode optical fiber to realize storage and computing functions, and this intelligent fiber has tremendous application potential in intelligent optical fiber communication and portends a new paradigm for brain-like computing.
Photonics Research
2022, 10(2): 02000357
Author Affiliations
Abstract
1 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
2 Key Laboratory of Advanced Transducers and Intelligent Control Systems (Ministry of Education and Shanxi Province), Taiyuan University of Technology, Taiyuan 030024, China
Raman distributed optical fiber sensing is required to achieve accurate temperature measurements in a micro-scale area. In this study, we first analyze and demonstrate the pulse transmission feature in the temperature variation area and the superposition characteristics of Raman optical time-domain reflectometry (OTDR) signals by numerical simulation. The equations of superimposed Raman anti-Stokes scattered signals at different stages are presented, providing a theoretical basis for the positioning and physical quantity demodulation of whole optical fiber systems based on the OTDR principle. Moreover, we propose and experimentally demonstrate a slope-assisted sensing principle and scheme in a Raman distributed optical fiber system. To the best our knowledge, this is the first experimental demonstration of Raman distributed optical fiber sensing in a centimeter-level spatial measurement region.
Photonics Research
2022, 10(1): 01000205
Author Affiliations
Abstract
1 Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
2 College of Physics and Optoelectronics, Institute of Optoelectronic Engineering, Taiyuan University of Technology,Taiyuan 030024, China
Chaotic Brillouin optical correlation domain analysis (BOCDA) has been proposed and experimentally demonstrated with the advantage of high spatial resolution. However, it faces the same issue of the temperature and strain cross-sensitivity. In this paper, the simultaneous measurement of temperature and strain can be preliminarily achieved by analyzing the two Brillouin frequencies of the chaotic laser in a large-effective-area fiber (LEAF). A temperature resolution of 1 ℃ and a strain resolution of 20 με can be obtained with a spatial resolution of 3.9 cm. The actual temperature and strain measurement errors are 0.37 ℃ and 10 με, respectively, which are within the maximum measurement errors.
Brillouin scattering simultaneous strain and temperature measurement chaotic laser BOCDA LEAF 
Photonic Sensors
2021, 11(4): 377
BAI Hua 1LIU Jie 1CHEN Wei 2SHI Jia 1,*[ ... ]HAN Zhibo 3,4,5
Author Affiliations
Abstract
1 Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Electronic and Information Engineering, Tiangong University, Tianjin 300387, China
2 College of Life Science, Tiangong University, Tianjin 300387, China
3 Tianjin Key Laboratory of Engineering Technologies for Cell Phamaceutical, Tianjin 300457, China
4 National Engineering Research Center of Cell Products / AmCellGene Co., Ltd., Tianjin 300457, China
5 State Key Lab of Experimental Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
In this work, the spectral properties of the photo-induced delayed luminescence (DL) from mesenchymal stem cells (MSCs) and their correlation with cell viability were investigated using the single photon counting combined with band-pass filters. The results show that the DL of MSCs has a broad spectral distribution, which covers from 300 nm to 650 nm at least. The DL spectrum is not evenly distributed, but mainly distributed in the range from 400 nm to 550 nm. In addition, the DL spectral distribution remains stable during the DL decay process. Compared with the DL spectra of MSCs with high viability (>80%), those of MSCs with low viability (<30%) show a significant red-shift, referring to the increase in the proportion of 572—650 nm band and the decrease in the proportions of both 315—436 nm band and 413—500 nm band. Furthermore, the degree of the DL spectral red-shift exhibits a monotonous change as MSCs’ viability decreases, and thus can be used as an important indicator for the cell viability assessment.
光电子快报(英文版)
2021, 17(6): 373

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!